Choroby, które powoduje mutacja pojedynczego genu są też określane jako mendlowskie lub dziedziczone monogenowo. Określenie „mendlowskie” pochodzi od nazwiska Grzegorza Mendla, który na przykładzie zielonego groszku badał, w jaki sposób są dziedziczone i przekazywane poszczególne cechy.
Diagnostyka rzadkich zaburzeń mendlowskich to bardzo pracochłonne zadanie, nawet dla doświadczonych genetyków.
Naukowcy z Baylor College of Medicine (Houston, Teksas, USA) starają się usprawnić ten proces, wykorzystując sztuczną inteligencję. System uczenia maszynowego AI-MARRVEL (AIM) (https://ai.nejm.org/doi/10.1056/AIoa2300009) pomaga w ustalaniu najbardziej prawdopodobnych wariantów zaburzeń.
„Wskaźnik rozpoznawania rzadkich chorób genetycznych wynosi tylko około 30 proc., a od pojawienia się objawów do postawienia diagnozy mija średnio sześć lat. Istnieje pilna potrzeba opracowania nowych podejść, które poprawią szybkość i dokładność diagnozy” – wskazał dr Pengfei Liu, zastępca dyrektora klinicznego w Baylor Genetics.
Szkolenie AIM odbywa się przy użyciu publicznej bazy danych znanych wariantów i analizy genetycznej zwanej Model organism Aggregated Resources for Rare Variant ExpLoration (MARRVEL), opracowanej wcześniej przez zespół Baylor. W bazie MARRVEL znajduje się ponad 3,5 miliona wariantów spośród tysięcy zdiagnozowanych przypadków.
Naukowcy dostarczają AIM dane dotyczące sekwencji genów i objawów pacjentów, a AIM udostępnia ranking najbardziej prawdopodobnych kandydatów na geny wywołujące rzadką chorobę.
Naukowcy porównali wyniki AIM z innymi algorytmami. Przetestowali modele, korzystając z trzech kohort danych z ustalonymi diagnozami z Baylor Genetics, sieci niezdiagnozowanych chorób finansowanej przez Narodowy Instytut Zdrowia (UDN) oraz projektu Deciphering Developmental Disorders (DDD). AIM konsekwentnie plasowało zdiagnozowane geny na kandydata nr 1 w dwukrotnie większej liczbie przypadków niż w przypadku wszystkich innych metod porównawczych wykorzystujących te rzeczywiste zbiory danych.
„Wyszkoliliśmy AIM, aby naśladował sposób, w jaki ludzie podejmują decyzje, a maszyna może to robić znacznie szybciej, wydajniej i przy niższych kosztach. Metoda ta skutecznie podwoiła wskaźnik trafnej diagnozy” – powiedział współautor badań, dr Zhandong Liu z Baylor.
AIM daje także nową nadzieję w nierozwiązanych od lat przypadkach chorób rzadkich, umożliwiając powtórne analizy w oparciu o nową wiedzę.
„Możemy znacznie usprawnić proces ponownej analizy, wykorzystując AIM do zidentyfikowania zestawu przypadków o wysokim stopniu pewności, które można rozwiązać, i przekazując je do ręcznego przeglądu – powiedział Zhandong Liu. - Przewidujemy, że to narzędzie może wykryć bezprecedensową liczbę przypadków, które wcześniej nie były uważane za możliwe do zdiagnozowania”.
Naukowcy przetestowali także potencjał AIM w zakresie odkrywania nowych kandydatów na geny, których nie powiązano z chorobą. AIM poprawnie przewidział dwa nowo zgłoszone geny chorobowe jako głównych "podejrzanych" w dwóch przypadkach.
Naukowcy z Baylor zamierzają opracować następną generację inteligencji diagnostycznej i wprowadzić ją do praktyki klinicznej.(PAP)
Autor: Paweł Wernicki
pmw/ bar/